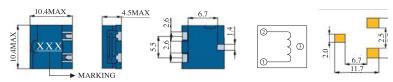


SMD POWER INDUCTORS

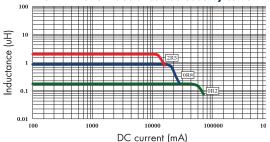
OWIEP104S TYPE

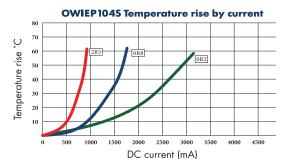
FEATURES

 Various high power inductors are superior to be high saturation for surface mounting.


APPLICATIONS

- 1. Power supply for VTR, OA equipment.
- 2. LCD television set, notebook PC.
- 3. Portable communication, equipments.
- 4. DC/DC converters, etc.


ELECTRICAL CHARACTERISTICS FOR OWIEP104S SERIES


Part Number	Inductance (uH) ⁽¹⁾	Test Frequency	DC Resistance (Ω MAX) ⁽²⁾	Saturation Current (A) ⁽³⁾	Temperature Current (A) ⁽⁴⁾
OWIEP104S-R22	0.22	100KHZ	2.6m	39.6	23.0
OWIEP104S-R45	0.45	100KHZ	3.7m	27.6	1 <i>7</i> .0
OWIEP104S-R80	0.8	100KHZ	5.9m	20.7	14.0
OWIEP104S-1R3	1.3	100KHZ	11.8m	16.6	10.5
OWIEP104S-1R8	1.8	100KHZ	18.6m	13.3	8.00
OWIEP104S-2R5	2.5	100KHZ	21.8m	11.8	7.40

www.owolff.com

OWIEP104S Inductance decrease by current

- 1. Inductance tested at 0.25V. Tolerance of inductance: 0.22uH: ±30%(N) 0.45uH~2.5uH: ±20%(M)
- 2. DCR test temp. limits 25°C.
- This indicates the value of current when the inductance is 30° lower than its initial value at D.C. superposition or D.C. curren
- To load current onto the components under normal ambience which cause the temp, change as Δt=40°C or more lower current.
- Please refer saturated current or the minimum temperature current as standard.