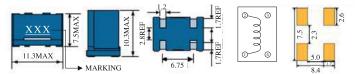


SMD POWER INDUCTORS

OWIEPI1010 TYPE

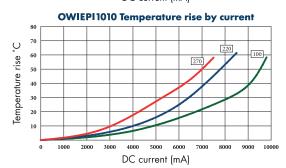
FEATURES

 Various high power inductors are superior to be high saturation for surface mounting.


APPLICATIONS

- 1. Power supply for VTR, OA equipment.
- 2. LCD television set, notebook PC.
- 3. Portable communication, equipments.
- 4. DC/DC converters, etc.


ELECTRICAL CHARACTERISTICS FOR OWIEPI 1010 SERIES


Part Number	Inductance (uH) ⁽¹⁾	Test Frequency	DC Resistance (Ω MAX) ⁽²⁾	Saturation Current (A) ⁽³⁾	Temperature Current (A) ⁽⁴⁾
OWIEPI1010-100	10	100KHZ	13.5m	4.9	7.80
OWIEPI1010-220	22	100KHZ	25.0m	3.3	6.00
OWIEPI1010-270	27	100KHZ	28.0m	3.0	5.20

www.owolff.com

OWIEPI1010 Inductance decrease by current

- 1. Inductance tested at 0.25V. Tolerance of inductance: ±20%(M)
- 2. DCR test temp. limits 25 °C.
- 3. This indicates the value of current when the inductance is 25% lower than its initial value at D.C. superposition or D.C. current.
- To load current onto the components under normal ambience, which cause the temp, change as Δt=40°C or more lower current.
- Please refer saturated current or the minimum temperature current as standard.